首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   15篇
  2021年   9篇
  2020年   4篇
  2019年   10篇
  2018年   9篇
  2017年   10篇
  2016年   5篇
  2015年   13篇
  2014年   20篇
  2013年   29篇
  2012年   34篇
  2011年   34篇
  2010年   20篇
  2009年   13篇
  2008年   24篇
  2007年   18篇
  2006年   17篇
  2005年   35篇
  2004年   9篇
  2003年   25篇
  2002年   11篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   10篇
  1995年   5篇
  1994年   9篇
  1992年   2篇
  1991年   1篇
  1990年   10篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有455条查询结果,搜索用时 234 毫秒
101.
Bitemporal intracerebral injections of puromycin in mice suppress indefinitely expression of memory of avoidance-discrimination learning. Ultrastructural studies of the entorhinal cortex of puromycin-treated mice revealed the following: (a) Abnormalities were not observed in presynaptic terminals and synaptic clefts; many postsynaptic dendrites or somas contained swollen mitochondria. (b) Dispersion of polyribosomes into single units or condensation of ribosomes into irregular aggregates with loss of "distinctiveness" was noted in a few neurons 7–27 hr after puromycin treatment. (c) Cytoplasmic aggregates of granular or amorphous material were frequently noted within otherwise normal neuronal perikarya. (d) Mitochondria in many neuronal perikarya and dendrites were swollen. Mitochondria in axons, presynaptic terminals, and glial cells were unaltered. The relationships between these lesions and the effect of puromycin on protein synthesis and memory are examined. It is suggested that the disaggregation of polysomes is too limited to explain the effect of puromycin on memory. Special emphasis is given to the swelling of mitochondria. The possible mechanisms and the significance of this lesion are discussed.  相似文献   
102.
The toxicological implications of alterations in intracellular thiol homeostasis during menadione metabolism have been investigated using freshly isolated rat hepatocytes. A strict correlation between depletion of protein sulfhydryl groups and loss of cell viability was observed. Loss of protein thiols preceded cell death, and occurred more rapidly in cells with decreased levels of reduced glutathione. Depletion of protein thiols was also associated with inhibition of Ca2+ efflux from the cells and perturbation of intracellular Ca2+ homeostasis. It is proposed that the oxidative stress induced by menadione metabolism in isolated hepatocytes results in the depletion of both soluble and protein thiols, and that the latter effect is critically associated with a perturbation of Ca2+ homeostasis and loss of cell viability.  相似文献   
103.
Summary The oxidative response to phagocytosis by chicken polymorphonuclear leucocytes was investigated as compared to guinea pig polymorphonuclear leucocytes.The polymorphs from both species respond to phagocytosis with an increased oxygen consumption, an increased generation of O2 and H2O2, and an increased oxidation of glucose through the hexose monophosphate shunt. The rate of oxygen consumption, and generation of O2 and H2O2 by phagocytosing chicken polymorphonuclear leucocytes is considerably lower than with phagocytosing guinea pig polymorphonuclear leucocytes. By contrast, the extent of hexose monophosphate shunt stimulation in chicken polymorphs is comparable to that of guinea pig polymorphs. Evidence is presented suggesting that H2O2 is preferentially degraded in chicken cells through the glutathione cycle, whereas catalase and myeloperoxidase are the two main H2O2 degrading enzymes in guinea pig cells.The 20,000 g fraction of the postnuclear supernatant of chicken polymorphs contains a cyanide-insensitive NADPH oxidizing activity which is stimulated during phagocytosis. Similar properties for the NADPH oxidizing activity of guinea pig polymorphs have been previously reported.It is concluded that the metabolic burst of phagocytosing chicken polymorphonuclear leucocytes is qualitatively similar to that of guinea pig polymorphonuclear leucocytes, but the latter cells are more active in all the biochemical parameters that have been measured. The difference in the H2O2 degradation pathways between the two species is accounted for by the lack of myeloperoxidase and catalase in chicken polymorphs.  相似文献   
104.
105.
We present a fast and effective method for anchoring bioreceptors to optical waveguides exhibiting a poorly reactive polymer interface and that have to be minimally perturbed with respect to their design. The study originated from the need to biofunctionalize a fiber optic Long Period Grating (LPG) that is tuned in a highly sensitive working point, the so-called transition mode, through the deposition of a high refractive index overlay. In particular, a thin film of atactic polystyrene (PS) was dip-coated onto the LPG with a thickness suitable to optimize the LPG sensitivity to refractive index changes of the surrounding medium. Bovine serum albumin was selected as sacrificial layer for its well-known adhesion capabilities to PS surfaces, then glutaraldehyde was used to conjugate IgGs, serving as prototypical bioreceptor, on the device surface. The effectiveness of the immobilization method was assessed by studying the interaction between the immobilized IgG with a suitable anti-IgG. In a preliminary study performed by means of ELISA and surface plasmon resonance, optimal conditions for the biomolecular testing with the LPG were assessed. Four distinct interactions were thus monitored in real time following the shift of the LPG attenuation band. These experiments suggest a novel and interesting biofunctionalization approach of unreactive polymers with applications in immunosensing and basic life science research.  相似文献   
106.
Wireless local area networks are an increasing alternative to wired data networks in workplaces, homes, and public areas. Concerns about possible health effects of this type of signal, especially when exposure occurs early in life, have been raised. We examined the effects of prenatal (in utero) exposure to wireless fidelity (WiFi) signal‐associated electromagnetic fields (2450 MHz center‐frequency band) on T cell development and function. Pregnant mice were exposed whole body to a specific absorption rate of 4 W/kg, 2 h per day, starting 5 days after mating and ending 1 day before the expected delivery. Sham‐exposed and cage control groups were used as controls. No effects on cell count, phenotype, and proliferation of thymocytes were observed. Also, spleen cell count, CD4/CD8 cell frequencies, T cell proliferation, and cytokine production were not affected by the exposure. These findings were consistently observed in the male and female offspring at early (5 weeks of age) and late (26 weeks of age) time points. Nevertheless, the expected differences associated with aging and/or gender were confirmed. In conclusion, our results do not support the hypothesis that the exposure to WiFi signals during prenatal life results in detrimental effects on the immune T cell compartment. Bioelectromagnetics 33:652–661, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
107.
In managed settings, seedlings are often fertilized with the objective of enhancing establishment, growth, and survival. However, responses of seedlings to fertilization can increase their susceptibility to abiotic stresses such as drought. Seedlings acclimate to variation in soil resources by reallocating carbon among different physiological processes and compartments, such as above versus belowground growth, secondary metabolism, and support of ectomycorrhizal fungi (EMF). We examined the effects of nutrient and water availability on carbon allocation to above and belowground growth of river birch (Betula nigra), as well as partitioning among root sugars, starch, phenolics, lignin, and EMF abundance. As nutrient availability increased, total plant biomass and total leaf area increased, while percent root biomass decreased. Root sugars, total root phenolics and EMF abundance responded quadratically to nutrient availability, being lowest at intermediate fertility levels. Decreased water availability reduced total leaf area and root phenolics relative to well-watered controls. No interactions between nutrient and water availability treatments were detected, which may have been due to the moderate degree of drought stress imposed in the low water treatment. Our results indicate that nutrient and water availability significantly alter patterns of carbon allocation and partitioning in roots of Betula nigra seedlings. The potential effects of these responses on stress tolerance are discussed.  相似文献   
108.
The "5' end mRNA artifact" issue refers to the incorrect assignment of the first AUG codon in an mRNA, due to the incomplete determination of its 5' end sequence. We performed a systematic identification of coding regions at the 5' end of all human known mRNAs, using an automated expressed sequence tag (EST)-based approach. Following parsing of more than 7 million BLAT alignments, we found 477 human loci, out of 18,665 analyzed, in which an extension of the mRNA 5' coding region was identified. Proof-of-concept confirmation was obtained by in vitro cloning and sequencing for GNB2L1, QARS and TDP2 cDNAs, and the consequences for the functional studies of these loci are discussed. We also generated a list of 20,775 human mRNAs where the presence of an in-frame stop codon upstream of the known start codon indicates completeness of the coding sequence at 5' in the current form.  相似文献   
109.
Poplar is an important crop and a model system to understand molecular processes of growth, development and responses to environmental stimuli in trees. In this study, we analyzed gene expression in white poplar (Populus alba) plants subjected to chilling. Two forward suppression-subtractive-hybridization libraries were constructed from P. alba plants exposed to low non-freezing temperature for 6 or 48 h. Hundred and sixty-two cDNAs, 54 from the 6-h library and 108 from the 48-h library, were obtained. Isolated genes belonged to six categories of genes, specifically those that: (i) encode stress and defense proteins; (ii) are involved in signal transduction; (iii) are related to regulation of gene expression; (iv) encode proteins involved in cell cycle and DNA processing; (v) encode proteins involved in metabolism and energetic processes; and (vi) are involved in protein fate.Different expression patterns at 3, 6, 12, 24, 48 h at 4 °C and after a recovery of 24 h at 20 °C were observed for isolated genes, as expected according to the class in which the gene putatively belongs. Forty-four of 162 genes contained DRE/LTRE cis-elements in the 5′ proximal promoter of their orthologs in Populus trichocarpa, suggesting that they putatively belong to the CBF regulon. The results contribute new data to the list of possible candidate genes involved in cold response in poplar.  相似文献   
110.
We have previously shown that Fhit tumor suppressor protein interacts with Hsp60 chaperone machinery and ferredoxin reductase (Fdxr) protein. Fhit-effector interactions are associated with a Fhit-dependent increase in Fdxr stability, followed by generation of reactive oxygen species and apoptosis induction under conditions of oxidative stress. To define Fhit structural features that affect interactions, downstream signaling, and biological outcomes, we used cancer cells expressing Fhit mutants with amino acid substitutions that alter enzymatic activity, enzyme substrate binding, or phosphorylation at tyrosine 114. Gastric cancer cell clones stably expressing mutants that do not bind substrate or cannot be phosphorylated showed decreased binding to Hsp60 and Fdxr and reduced mitochondrial localization. Expression of Fhit or mutants that bind interactor proteins results in oxidative damage and accumulation of cells in G2/M or sub-G1 fractions after peroxide treatment; noninteracting mutants are defective in these biological effects. Gastric cancer clones expressing noncomplexing Fhit mutants show reduction of Fhit tumor suppressor activity, confirming that substrate binding, interaction with heat shock proteins, mitochondrial localization, and interaction with Fdxr are important for Fhit tumor suppressor function.Fhit protein is a powerful tumor suppressor that is frequently lost or reduced in cancer cells because of rearrangement of the exquisitely DNA damage-sensitive fragile FHIT gene. Restoration of Fhit expression suppresses tumorigenicity of cancer cells of various types, and the ability to induce apoptosis in cancer cells in vitro is reduced by specific Fhit mutations (1, 2).Through studies of signal pathways affected by Fhit expression, by searches for Fhit protein effectors, and by in vitro analyses of Fhit activity, we and others have defined Fhit enzymatic activity in vitro (3), apoptotic activity in cells and tumors (46), and most recently identification of a Fhit protein complex that affects Fhit stability, mitochondrial localization, and interaction with ferredoxin reductase (Fdxr)5 (7). The complex includes Hsp60 and Hsp10 that mediate Fhit stability and may affect import into mitochondria, where Fhit interacts with Fdxr, which is responsible for transferring electrons from NADPH to cytochrome P450 via ferredoxin. Virally mediated Fhit restoration in Fhit-deficient cancer cells increases production of intracellular reactive oxygen species (ROS), followed by increased apoptosis of cancer cells under oxidative stress conditions; conversely, Fhit-negative cells escape apoptosis, likely carrying oxidative DNA damage that contributes to accumulation of mutations.The Fhit protein sequence, showing high homology to the histidine triad (HIT) family of proteins, suggested that the protein product would hydrolyze diadenosine tetraphosphate or diadenosine triphosphate (Ap3A) (8), and in vitro studies showed that Ap3A was cleaved into ADP and AMP by Fhit. The catalytic histidine triad within Fhit was essential for catalytic activity (3), and a Fhit mutant that substituted Asn for His at the central histidine (H96N mutant) was catalytically inactive, although it bound substrate well (3). Early tumor suppression studies showed that cancer cells stably transfected with wild type (WT) or H96N mutant Fhit were suppressed for tumor growth in nude mice. This suggested the hypothesis that the Fhit-substrate complex sends the tumor suppression signal (9, 10). To test this hypothesis, a series of FHIT alleles was designed to reduce substrate-binding and/or hydrolytic rates and was characterized by quantitative cell-death assays on cancer cells virally infected with each allele. The allele series covered defects as great as 100,000-fold in kcat and increases as large as 30-fold in Km. Mutants with 2–7-fold increases in Km had significantly reduced apoptotic indices and the mutant with a 30-fold increase in Km retained little apoptotic function. Thus, the proapoptotic function of Fhit, which is likely associated with tumor suppressor function, is limited by substrate binding and is unrelated to substrate hydrolysis (11).Fhit, a homodimeric protein of 147 amino acids, is a target of tyrosine phosphorylation by the Src family protein kinases, which can phosphorylate Tyr-114 of Fhit in vitro and in vivo (12). After co-expression of Fhit with the Elk tyrosine kinase in Escherichia coli to generate phosphorylated forms of Fhit, unphosphorylated, mono-, and diphosphorylated Fhit were purified, and enzyme kinetics studies showed that monophosphorylated Fhit exhibited monophasic kinetics with Km and kcat values ∼2- and ∼7-fold lower, respectively, than for unphosphorylated Fhit. Diphosphorylated Fhit exhibited biphasic kinetics; one site had Km and kcat values ∼2- and ∼140-fold lower, respectively, than for unphosphorylated Fhit; the second site had a Km ∼60-fold higher and a kcat ∼6-fold lower than for unphosphorylated Fhit (13). Thus, it was possible that the alterations in Km and kcat values for phosphorylated forms of Fhit might favor formation and lifetime of the Fhit-Ap3A complex and enhance tumor suppressor activity (see
Fhit forms
Kinetic parameters
% Sub-G1
Direct binding
Subcellular location
Co-IP in vivo
8-OHdG
Apoptosis
Tumor suppressor
Km (mm)kcat (s–1)A549MKN74Hsp60FdxrHsp60Fdxr
Fhit WT 1.6 +/– 0.19 2.7 +/– 0.95 43 24 Yes Yes Cyt & mito Yes Yes Yes Yes Yes
Catalyt mutants
   H96D Up 2-fold Down >2 × 104 29 NT NT NT Cyt & mito Yes Yes NT Yes NT
   H96N Up 2-fold Down >5 × 105 31 14.4 NT NT Cyt & mito Yes Yes Yes Yes Yes
Loop mutants
   Y114A Up 23-fold Down 2-fold 3.7 NT NT NT Cyt +/– +/– +/– No No
   Y114D NT NT 2.9 6 NT NT Cyt +/– +/– No –/+
   Y114E NT NT NT NT NT NT Cyt & mito –/+ –/+ No NT
   Y114F Up 5-fold Up 1.1-fold 11.5 3 NT NT Cyt & mito –/+ –/+ No No
   Y114W Up 5-fold Up 1.4-fold NT NT NT NT Cyt & mito –/+ NT NT
   del113–117 Up 10-fold Down 38-fold 5 NT NT NT NT NT NT No NT
Other mutants
   L25W Up 7-fold Down 4-fold 15 NT NT NT Cyt NT –/+
   I10W,L25W Up 32-fold Down 6-fold 11 NT NT NT NT NT NT NT NT NT
   F5W Up 3.3 fold NT NT 5 NT NT NT NT NT +/– No NT
Purified pFhit
   pFhit Down 0.4-fold Down 7-fold NA NA –/+ Yes NA NA NA NA NA NA
   ppFhit Down 0.4-fold Down > 100-fold NA NA –/+ Yes NA NA NA NA NA NA
Up 60-fold Down 6-fold
Open in a separate windowTo explore the in vivo importance of the Tyr-114 phosphorylation site and define Fhit-mediated signaling events, Semba et al. (14) compared the differential biological effects of Ad-FHIT WT and Ad-FHIT Tyr-114 mutant expression in human lung cancer cells. Caspase-dependent apoptosis was effectively induced only by WT Fhit protein. However, the biological significance of phosphorylation at Tyr-114 has been difficult to study because the endogenous phosphorylated forms have very short half-lives; activation of epidermal growth facto receptor family members induces Fhit phosphorylation by Src and proteasome degradation of phosphorylated Fhit (15).Although there are possible connections among the various pathways known to be altered in Fhit-deficient cells, apoptosis, DNA damage-response checkpoint activation, ROS production, and related biological effects of Fhit loss or overexpression, details of the pathway(s) leading from Fhit overexpression to cell death and tumor suppression have not been delineated. Now that a Fhit signaling complex has been identified, we set out to examine which structural features of Fhit protein might participate in individual steps of the pathway leading from Fhit overexpression through complex formation, subcellular localization, interaction with mitochondrial Fdxr, DNA damage induction, cell cycle changes, apoptosis, and ultimately tumor suppression. The underlying hypotheses were as follows: substrate-binding mutants would behave similarly to WT; nonsubstrate-binding mutants would be defective in some step of the pathway, perhaps complexing with heat shock proteins or Fdxr or perhaps induction of DNA damage; and Tyr-114 mutants, which also affect formation or stability of the enzyme-substrate complex, would also be defective in executing some step of the Fhit overexpression pathway to cell death. One goal was to identify specific mutants that exhibited deficiency in specific steps of the pathway, so that such mutants could be used to dissect each step in more detail. Using in vitro Fhit and Fhit-effector protein interactions, we aimed to determine the following: 1) which proteins of the complex interact directly with Fhit, and 2) the biological role of these interactions in vivo. Using cancer cells expressing exogenous WT and mutant Fhit proteins, we were able to examine the structural features of Fhit that affect the direct interaction with its effectors, participate in ROS production, and are necessary for tumor suppression activity.  相似文献   
[首页] « 上一页 [6] [7] [8] [9] [10] 11 [12] [13] [14] [15] [16] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号